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A system of equations describing meteoroid motion in the terrestrial atmosphere is considered. It is shown 

that the system can be reduced to a single second-order differential equation for the height dependence of 

the mass. Approximate analytical expressions for the solution of the Cauchy problem for this equation are 

obtained, and conditions of applicability of these solutions are determined. The general case of the problem 

is solved numerically. Results of mathematical modeling are presented. 

Introduction. Meteoroids entering the terrestrial atmosphere interact with atoms and molecules of air. The 

entire meteoroid flight can be divided provisionally into two portions, where its behavior is determined by different 

values of the Knudsen number. These two portions of the flight correspond to large and small Knudsen numbers 

(Kn >_ 0.1 and Kn <_ 0.1 [1 ]. The main difference in the meteoroid flight within these two regions is connected 

with the effect of atoms and molecules of air. At large Knudsen numbers, this effect is insignificant and does nat 

lead to a noticeable change in the meteoroid mass during the flight. In the second portion of the flight, considerable 

changes in the meteoroid mass take place, which affects substantially the change in parameters of the moving 

meteoroid. 

The change of the meteoroid mass in the course of flight, known as ablation, is explained by the effect of 

several factors [2 ]. At heights exceeding 120 km, collisions with separate atoms and molecules of air rarely occur. 

At heights lower than 120 kin, when the terrestrial atmosphere becomes more dense, the effect of blodcing of the 

meteoroid by ablated molecules takes place. At heights of 1 - 2  kin, when the terrestrial atmosphere becomes 

substantially more dense, intense evaporation of the meteoroid material takes place, which is connected with the 

rapid heating of its surface as a result of collisions with molecules of air. 

The kinetic energy being lost by the moving meteoroid is distributed over different portions of its flight 

differently. Prior to an intense evaporation of the meteoroid material, approximately half the kinetic energy being 

lost is carried away by recoiled air molecules, and the rest is carried away by the material being evaporated. At 

lower flight heights when the evaporation increases, the main share of the kinetic energy is carried away by 

evaporated molecules. In this case, energy losses are even more complicated due to the uncoupled shock wave being 

formed. 

Another mechanism of mass loss can take place in the course of meteoroid motion, which is connected with 

melting of the outer layer and removal of the melt film formed by the approaching air stream. It has been shown 

in a number of investigations that stony meteoroids lose a substantial share of their mass due to the melting and 

removal process [2 ], and iron meteoroids in this case lose almost the entire mass. 

In addition to the above-enumerated factors leading to a change in the mass of the moving meteoroid, data 

can be found which bear witness to the fact that most meteoroids break down into several pieces in the course of 

their flight, tn a number of cases, moving meteoroids undergo, in essence, continuous fragmentation. 

It follows from the above considerations that meteoroid ablation is a rather complicated process. This 

circumstance leads to uncertainties in estimates of parameters of the problem of the meteoroid motion. In the 

present work, we attempt to find an analytical solution of the problem of meteoroid motion and compare it with 

results of the mathematical modeling of this phenomenon. 
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In what follows, we assume that the parameters  of the problem of meteoroid motion change within a range 

of values, and the meteoroid motion is studied at different values of these parameters .  Compar ison  of results of a 

numerical experiment  with experimental  data will make it possible to adjust  the values of the paramete rs  and reveal 

the contribution of each of the factors to meteoroid flight. 

Formulat ion of the Problem and Analytical Solutions. The  sys tem of equations of the physical  theory of 

meteoroid motion written under  the assumption of motion of the body within a plane including the axis z is as 

follows [ 1 1: 

d v  1 d m  
m ~ = m g s i n  0 - ~ p v 2 c l S  - f v  d t  ' (1) 

dz 
d t  v sin O, (2) 

2 
dO _ m v  cos 0 S 2 

m y  d t  z + n ~ o  + m g c o s O - c 2 w p v z _  ' (3) 

d m  c3 3 
e°  d t  - 2 S p y  . (4) 

It is assumed in Eqs. (2) and (3) that the change in the densi ty with the height obeys  the barometr ic  formula 

The reactive recoil coefficient f changes from - 1  to 1. The  coefficient cl decreases  with the height and 

• changes within the limits of 0.9 to 2 with variations in the Knudsen number  Kn from 0.1 to 10. 

The  coefficient c3 consists of the convective and radiative portions of the heat  t ransfer .  T h e  coefficient 

depends on the velocity v, air  density p ,  and the average meteoroid size r 0. In the case of large bodies,  the radiative 

heat t ransfer  plays the main part,  and,  for example,  as has been shown by computat ions for a meteoroid with a 

radius of 0.5 m, c3 varies within the limits of 0.01 to 0.1. The  coefficient of the lifting power c2 is small,  and its 

effect on the meteoroid motion is usually not taken into account [3 ]. 

Another  important  paramete r  of the moving meteoroid being observed is the luminosity intensi ty,  calculated 

by the formula 

1 dm ( H )  I = ~ TO v2 roC3 pO------~S 5 
- d ~ - -  4e 0 v exp - . (6) 

Here r 0 is an experimental ly  evaluated coefficient. For the range of meteoroid velocities of 10 to 80 km/ sec ,  the 

value of T O lies in the range of 0.6- 10 -3  to 1.0.10 -3  [3 ]. 

The sys tem of equations (1)-(4) is closed by the obvious relationships 

4 2 
rn = - ~ P m r  , S = J r r  O. (7) 

The sys tem of equations (1)-(7) is solved under  the assumption that in the initial ins tant  the coordinates ,  

velocity, and mass of the meteoroid are given: z ( t  = O) = z o, O(t = 0) = 0 o, v ( t  = O) = vo, m ( t  = O) = too. 

The solution yields the parameters  of the moving meteoroid z ( t ) ,  O(t) ,  v ( t ) ,  r e ( t ) ,  and I ( t ) ,  which depend 

parametrical ly on the coefficients cl,  c2, c3, and f discussed above. 

In calculat ions of the meteroid motion,  the height at which the force of the te r res t r ia l  a t t rac t ion  is 

equilibrated by the resistance force is frequently taken as the initial coordinate zo. Without accounting for the mass  

change, one obtains from Eq. (1) 
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mog sin 0 o = -~ PoVoClS exp - 

from which z o can be found at given too, vo, and 0o: 

(8) 

2 

z 0 = H In (2~--~ s--~n ~9o- ) . (9) 

Equation (1), not taking into account the mass change and written for the fixed angle 0 = 0 o, can be 

i Aegrated, and one can obtain the v(z) dependence.  

By dividing Eq. (1) by Eq. (2), we obtain 

dv g +  - -  v exp - (10) 
d---z = - v 2m sin 0 

from which, af ter  the substitution y = v2/2,  Zo = c l p o S / ( m  sin 0), we arrive at the equation 

dz  g + Zo exp - y ,  

which upon integration by the Lagrange-mult ipl ier  method yields the dependence  of the meteoroid velocity on the 

coordinate: 

{21_. 2 I~ ( "~)1 ~(ZO) exp(- x) }1/2 
v (z) = x/2- v 0 exp 0 H exp - - g H  f dx  × exp 

~(z) x 
(12) 

where 

For z close to z 0 de te rmined  by Eq. (9), one can arrive, with regard for Eq. (12), at the ce lebra ted  

asymptot ic  expression 

where B = p o g H c l S / ( 2 m g  sin 0) is the ballistic coefficient. 

Now let us consider the solution of the problem of meteroid motion at large Knudsen  numbers ,  taking into 

account disintegration of the meteoroid. 

With regard for (4), Eq. (1) can be written as follows: 

dv  l 2 c3f P 
m --~ = mg  sin O - ~ p v  c lS  + ~ Sv  4 .  (14) 

By dividing this equation by Eq. (2), we obtain 

mdzz + v - - 2 s i n 0 S v e x p  - + 2e O s i n ~  

Upon multiplying by v, this equation lakes the form 
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m dv 2 

2 dz 
  4exo( ):o ClPo Sv 2exp - + 2% s inO 

- -  ~ + m g  2 sin 0 
(16) 

With regard  for (2) and  (4), we obtain  

v - - -  exp . (17) 
c 3 po S dz 

Since 

z 3  2/3  2/3 (18)  
S -  m 

(4Jr pmA) 2/3 

we have 

2 - 2 / 3 d m  (H) 2eosinO(4~PmA)2/3 (19) 
v = B Om dz exp , B 0 = ~32/3 

c3 PO 

By subst i tu t ing (18) and  (19) into Eq. (16), we arr ive at the equat ion descr ib ing  the change  in meteoro id  

mass  in the course  of  its motion:  

d2m (f ~) (d_~zm)2 1 dm 2g ( H) ( cle 0 din) 2~3 (20) 
m - - + 2  - + - - m ~ +  exp - m " m = 0  

dz 2 H dz -~o c3 g ~ " 

For Eq. (20), at  a given initial meteoroid  mass  m(t = O) = mo and  velocity v(t = O) = vo, we have the C a u c h y  problem 

with 

m(z  = Zo) = m 0 (21) 

and  

dm yore 0 (22) 
dz (z = Zo) - BO exp - . 

By solving problem (20)- (22) ,  we evaluate re(z),  and  then,  by  formula  (11), v(t). T h e  t ime d e p e n d e n c e  of 

the z coord ina te  can be found by solving Eq. (2) with the given initial height  z(t = O) = to. 
Let us in t roduce  dimensionless  variables and  parameters  by the  following formulas :  

m z v 2g H2 c Ieo 
m -  , z -  , v = - - ,  ) ~ 1 - - -  az  _ - -  (23 )  

1 / 3 '  
m 0 H v o Born 0 c 3 gH 

Then ,  Eqs. (19) and  (20) will a s sume the following form (in what  follows, we omit  pr imes) :  

1 
( z )  = % , ,J31,J2 /  ,J2 

Born 0 dm - 2/3 
H - ~ z  exp (z) m , 

(24) 

f 1 )  2 2/3 mmzz + 2 - mz + mmz + Zl exp ( -  z) (m - c~lrnz) m = O, (25) 
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m ( z  = Zo) = 1, (26) 

drn (z = Zo) - 1/3 exp - . 
dz Born 0 

(27) 

The system of equations (24), (25) with conditions (26), (27) can be convenicntly used in the mathematical  

modeling of meteroid motion in the terrestrial atmosphere. 

An analytical solution of the Cauchy problem (25)-(27) cannot generally be found. Therefore ,  we will seek 

the solution under  the assumption that the force of gravity in Eq. (25) is compensated by the drag force. Equation 

(25) in this case transforms into 

turn= + 2 - In z + m r n  z = O. (28) 

It can be solved by the substitution re(z)-- exp I f  ~n(z)dz], and the solution is expressed,  with regard for (26) and 

(27), as follows: 

m (z) = 

[ l 1 + (exp ( -  z) - exp ( -  Zo) ) 
Bom lo/ 3 

exp - ~ 1/3 ( e x p ( - z ) - e x p ( - z o ) )  , 
~0m0 

2(f+ 1 / 6) 
1 

1 
6" 

It follows from (29) that when f > - I / 6 ,  the meteoroid mass approaches zero at the height 

(29) 

n t / 3  ] 
Dora 0 

z 1 = z  O - I n  1 + exp(zo)  (30) 

from which follows the relationship 

-2v~H + 
(31) 

m o = B0 (exp ( -  zl) - exp ( -  z0) ) , 

which makes it possible to evaluate the initial meteoroid mass if the height at which it burns away completely is 

known. 

By substituting (29) into (24), we obtain the change of the meteoroid velocity with height: 

v ( z )  = 

2(f+ t / 6) 1 

t , f ; ~  -~; 

exp 

2v H t :1 1 Bornlo/3 + (exp ( -  z) - exp ( -  Zo) ) 

6Bomo/3 (exp ( -  z) - exp ( -  z0) ) , 
1 f = - ~ .  

(32) 
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By taking account of (29) and (32), we obtain from Eq. (6) the dependence of the meteoroid luminosity 

on height. In dimensioned variables it can be expressed as follows: 

, ( : )  
15] ' - 2  

x ~°m° 

3voH ( ( 1 
exp _ I /3  exp - - e x p  - , f = - ~ .  

2Born 0 

It should be noted that, in the approximation being considered, the following relationship holds: 

(33) 

/ (34)  
V m = c o n s t  , 

which is the integral of motion of the moving meteoroid with regard for its disintegration. 

Finally, we consider another  widespread model of meteoroid motion accounting for its slowing down and 

disintegration [3 ]. It coincides with problem (25)-(27),  where the effect of the force of gravity is not accounted for 

and it is assumed that f = 0. In this case, we obtain from Eq. (16) 

m dv 2 cle 0 dm (35) 
- - - - +  mg - 0 ,  
2 dz c 3 dz 

from which we obtain the energy integral for the moving meteoroid with regard for its disintegration: 

2 f )  v cle 0 m 
-~ + gz - I n - -  = b I . (36) 

ca ) mo 

With characteristic values of parameters of the problem, we have gz << v 2. Therefore ,  the term gz can be 

neglected and,  with regard for the initial data, the constant takes the form bl = v~/2. 

By substituting (19) into (35), we arrive at the equation of the first kind with respect to re(z): 

2 

z BO -2/3dmdz (H)  (-~--3)(cleO]mVOm 0 - -  2 ( 3 7 )  -w- m exp + gz - In . 

Without taking into account the effect of the force of gravity in Eq. (37), its solution with regard for the 

condition m(z = O) = mo is as follows: 

I c3Bomlo/3 
z = z 0 - H In 1 - 2ClHeo exp 

Here 

exo,- , ] 
- a d x  . 

x t ( m  ) X 

(38) 

2 
C 3 V 0 

~ - 

a = ,...,~cle 0 x I --c~ x 2 a 1 +~aln 
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Fig. 1. Dependences of mass (a), velocity (b), and luminosity (c) of a moving 

meteoroid on (dimensionless) height z at cl = 0.9 and f =  1 and different values 

of the parameter  k = eo/c3: 1) kl = 10; 2) k2 = 50; 3) k3 = 150; 4) k 4 = 250; 

5) k5 = 500 MJ]kg. 

Results of Mathematical  Modeling. Generally,  as has been noted above, an analytical solution of the prob- 

lem of meteoroid motion cannot be found. Therefore,  to find the solution of the problem within a wide tango of 

variation of parameters,  we used a numerical method. The  Cauchy problem (25)-(27) was solved numerical ly by 

the four th-order  R u n g e - K u t t a  method [4 ]. 

Figure 1 illustrates results of calculations of the characteristics of meteoroid motion at various parameters  

of the problem. It is evident that at a certain value of k, the character  of the dependences  changes. This takes place 

at k ~ 220 MJ/kg. When k < 220 MJ/kg, the meteoroid disintegrates completely in the terrestrial  a tmosphere.  

When k >220 MJ/kg,  it reaches the surface of the Earth. Disintegration of the meteoroid in the a tmosphere  depends 

on its composition and the coefficient of the heat transfer to the ambient air. It is usually assumed that the maximum 

value of e0 is 5000 kJ /kg  and the minimum value of the coefficient c3 = 0.01, which leads to the equation k = ks. 

Therefore ,  at the maximum disintegration enthalpy of the meteoroid and minimum coefficient of heat t ransfer ,  it 

follows from Fig. la that the meteoroid mass decreases approximately twofold. 

Analytical solutions re(z),  v(z), and l (z)  for the motion of a meteoroid presented by Eqs. (29), (32), and 

(33) at values of f = 1 and c] -- 0.9 are described well by curve 1 and satisfactorily by curve 2, which means that 

the analytical solution can be used to describe meteoroid motion when k < kz = 50 MJ/kg.  

This work was carried out with the support of the ISTC project, grant No. V23-96. 

N O T A T I O N  

m, meteoroid mass; v, meteoroid velocity; z, vertical coordinate; 0, angle of inclination with respect to the 

horizon; t, time; Kn, Knudsen number;  g, free-fall  acceleration; f, coefficient of reactive force; el ,  a i r -drag 

coefficient; c2, l ifting-force coefficient; c 3, hea t - t ransfer  coefficient; e0, effective dis integrat ion enthalpy;  T 0, 

coefficient of luminosity efficiency; S, area of meteoroid surface; A, form-factor  (A = 1 for sphere);  R0, radius of 

the Earth; B, ballistic coefficient; p,  atmosphere density; Po, air density at sea level (Po -- 1.29 kg /m 3) ; Pm, densi ty 

of meteoroid substance (Pro = 8000 kg/m3); H, height of homogeneous a tmosphere  (H = 7000 m); 1o, size of 

meteoroid. 
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